Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity.

نویسندگان

  • Zachary Charlop-Powers
  • Clara C Pregitzer
  • Christophe Lemetre
  • Melinda A Ternei
  • Jeffrey Maniko
  • Bradley M Hover
  • Paula Y Calle
  • Krista L McGuire
  • Jeanne Garbarino
  • Helen M Forgione
  • Sarah Charlop-Powers
  • Sean F Brady
چکیده

Numerous therapeutically relevant small molecules have been identified from the screening of natural products (NPs) produced by environmental bacteria. These discovery efforts have principally focused on culturing bacteria from natural environments rich in biodiversity. We sought to assess the biosynthetic capacity of urban soil environments using a phylogenetic analysis of conserved NP biosynthetic genes amplified directly from DNA isolated from New York City park soils. By sequencing genes involved in the biosynthesis of nonribosomal peptides and polyketides, we found that urban park soil microbiomes are both rich in biosynthetic diversity and distinct from nonurban samples in their biosynthetic gene composition. A comparison of sequences derived from New York City parks to genes involved in the biosynthesis of biomedically important NPs produced by bacteria originally collected from natural environments around the world suggests that bacteria producing these same families of clinically important antibiotics, antifungals, and anticancer agents are actually present in the soils of New York City. The identification of new bacterial NPs often centers on the systematic exploration of bacteria present in natural environments. Here, we find that the soil microbiomes found in large cities likely hold similar promise as rich unexplored sources of clinically relevant NPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global biogeographic sampling of bacterial secondary metabolism

Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the glo...

متن کامل

Arixanthomycins A–C: Phylogeny-Guided Discovery of Biologically Active eDNA-Derived Pentangular Polyphenols

Soil microbiomes are a rich source of uncharacterized natural product biosynthetic gene clusters. Here we use short conserved biosynthetic gene sequences (natural product sequence tags) amplified from soil microbiomes as phylogenetic markers to correlate genotype to chemotype and target the discovery of novel bioactive pentangular polyphenols from the environment. The heterologous expression of...

متن کامل

Chemical-biogeographic survey of secondary metabolism in soil.

In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary...

متن کامل

Natural product biosynthetic gene diversity in geographically distinct soil microbiomes.

The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ...

متن کامل

Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale.

Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 51  شماره 

صفحات  -

تاریخ انتشار 2016